Search results for "Electrochemical sensors"
showing 10 items of 12 documents
Electrochemical quantification of oxidative stress in airway epithelial cells
Reduced graphene oxide decorated with metals nanoparticles electrode as electrochemical sensor for dopamine
2019
Dopamine (DA) is one of the most important neurotransmitters that influences the processes that involve memory, sleep, mood, learning among others [1]. In fact, in the last years, dopamine concentration in human body fluids has been related to some neurodegenerative diseases, such as Parkinson and Alzheimer's diseases [2]. The possibility to have a bio-marker for these disease is of extreme importance because, disease related with dementia, are diagnosed when they are already developed and their management become almost impossible. The possibility to continuously monitor DA level in fluids, such as blood and urine, could accelerate the early diagnosis of these diseases. The principal analyt…
Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract
2022
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molec…
Ascorbic Acid determination using linear sweep voltammetry on flexible electrode modified with gold nanoparticles and reduced graphene oxide
2020
Indium tin oxide (ITO) coated on flexible polyethylene terephthalate (PET) substrate electrode was modified with reduced graphene oxide and gold nanoparticles by simple co-electrodeposition performed at -0.8 V vs SCE for 200 s. All samples were characterized by electron scan microscopy. The as prepared electrode was used as electrochemical sensor to selective detection of ascorbic acid using linear sweep voltammetry. Excellent results were obtained in a linear range from 20 to 150 µM of ascorbic acid with a limit of detection of about 3.1 µM (S/N=3.3). The sensors have a reproducibility of about 5.5% and also show high selectivity towards different interferents such as chlorine, calcium, ma…
Development of a nanostructured sensor for monitoring oxidative stress in living cells
2018
Oxidative burden is elevated in the lung of COPD patients and is associated with aging and chronic inflammation. When overcoming physiological levels, reactive oxygen species (ROS) cause cell damage and sustain inflammation. Both lung epithelium and alveolar macrophages contribute to ROS generation. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric assays. We present an amperometric nanostructured sensor for real-time detection of hydrogen peroxide (H2O2) released by living cells. The H2O2 sensing performance was evaluated through the current vs time response of platinum rod at a working potential of −0.45 V vs saturated calomel electrode acting as…
Photoelectrochemical Bisphenol S Sensor Based on ZnO‐Nanoroads Modified by Molecularly Imprinted Polypyrrole
2019
Molecularly imprinted polymers are important tools for the design of sensors and other molecular recognition based analytical systems. In this paper the development of a photoelectrochemical sensor for selective bisphenol determination is reported. The sensor is based on a glass/ZnO/MIP‐Ppy structure consisting of glass modified by a ZnO layer (glass/ZnO), which is functionalized by molecularly imprinted conducting polymer polypyrrole (MIP‐Ppy). The sensitivity of the sensor to bisphenol is in the range of 0.7–12.5 µm. Selectivity tests to other bisphenolic compounds are performed. Some aspects of a photoinduced response mechanism in glass/ZnO/MIP‐Ppy nanostructures are predicte…
FABBRICAZIONE DI SENSORI ELETTROCHIMICI NANOSTRUTTURATI PER APPLICAZIONI NELL’INDUSTRIA ALIMENTARE E BIOMEDICHE
2023
Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat
2022
Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of co…
FLEXIBLE ELECTRODE BASED ON GOLD NANOPARTICLES AND REDUCED GRAPHENE OXIDE FOR URIC ACID DETECTION USING LINEAR SWEEP VOLTAMMETRY
2021
In this work, an electrochemical sensor for uric acid determination is shown with a preliminary study for its validation in real samples (milk and urine). Uric acid can be electrochemically oxidized in aqueous solutions and thus it is possible to obtain electrochemical sensors for this chemical by means of this electrooxidation reaction. Indium tin oxide coated on flexible polyethylene terephthalate substrate, modified with reduced graphene oxide and gold nanoparticles by co-electrodeposition, was used. Electrodeposition was performed at -0.8V vs SCE for 200 s. All samples were characterized by electron scan microscopy and electron diffraction spectroscopy. A careful investigation on the ef…
Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor
2022
Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On I…